2004 Vol. 6, No. 16 2825–2828

Stereoselective Synthesis of 3-Alkylideneoxindoles Using Tandem In-Mediated Carbometalation and Pd-Catalyzed Cross-Coupling Reaction

Reiko Yanada, † Shingo Obika, † Munetaka Oyama, † and Yoshiji Takemoto*, †

Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan, and Division of Research Initiatives, International Innovation Center, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

takemoto@pharm.kyoto-u.ac.jp

Received June 16, 2004

ABSTRACT

$$\begin{bmatrix}
R^1 \\
\ln \\
R^2
\end{bmatrix}$$

$$\begin{bmatrix}
R^3X \\
R^2
\end{bmatrix}$$

$$\begin{bmatrix}
R^3X \\
R^2
\end{bmatrix}$$

Efficient methods for stereoselective synthesis of various (E)-, (Z)-, and disubstituted 3-alkylideneoxindoles were investigated using tandem In-mediated carbometalation and ligandless Pd-catalyzed coupling reaction.

Oxindoles are important constituents of natural indole alkaloids,¹ drug candidates,² and metabolic intermediates. Among them, 3-alkylideneoxindoles are well-known to be versatile compounds in terms of biological activity and synthetic applicability. For example, (*E*)-alkylideneoxindoles are important synthetic intermediates of TMC-95A³ as well as drug candidates of tyrosine kinase inhibitors⁴ and antirheumatic compounds.⁵ Similarly, much attention has been

directed to (*Z*)-alkylideneoxindoles as promising inhibitors of tyrosin kinase⁴ and cyclin-dependent protein kinase.⁶ However, despite their importance, stereoselective synthesis of these (*E*)- and (*Z*)-3-alkylideneoxindoles remains a difficult problem.^{3,7} In addition, stereoselective synthesis of 3-disubstituted 3-alkylideneoxindoles, which are expected to have unique biological activity, has not been achieved.

[†] Graduate School of Pharmaceutical Sciences.

[‡] International Innovation Center.

^{(1) (}a) Kam, T.-S.; Choo, Y.-M. *Tetrahedron* **2000**, *56*, 6143. (b) Cane, A.; Tournaire, M.-C.; Barritault, D.; Crumeyrolle-Arias, M. *Biochem. Biophys. Res. Commun.* **2000**, *276*, 379. (c) Tsuda, M.; Mugishima, T.; Komatsu, K.; Sone, T.; Tanaka, M.; Mikami, Y.; Shiro, M.; Hirai, M.; Ohizumi, Y.; Kobayashi, J. *Tetrahedron* **2003**, *59*, 3227. (d) Marti, C.; Carreira, E. M. *Eur. J. Org. Chem.* **2003**, 2209. (e) Akai, S.; Tsujino, T.; Akiyama, E.; Tanimoto, K.; Naka, T.; Kita, Y. *J. Org. Chem.* **2004**, *69*, 2478.

⁽²⁾ Zhang, T. Y.; Zhang, H. Tetrahedron Lett. 2002, 43, 193 and references therein.

^{(3) (}a) Ma, D.; Wu, Q. *Tetrahedron Lett.* **2000**, *41*, 9098. (b) Lin, S.; Danishefsky, S. J. *Angew. Chem., Int. Ed.* **2001**, *40*, 1967. (c) Inoue, M.; Furuyama, H.; Sakazaki, H.; Hirama, M. *Org. Lett.* **2001**, *3*, 2863. (d) Lin, S.; Danishefsky, S. J. *Angew. Chem., Int. Ed.* **2002**, *41*, 512. (e) Albrecht, B. K.; Williams, R. M. *Org. Lett.* **2003**, *5*, 197. (f) Lin, S.; Yang, Z.-Q.; Kwok, B. H. B.; Koldobskiy, M.; Crews, C. M.; Danishefsky, S. J. *J. Am. Chem. Soc.* **2004**, *126*, 6347.

^{(4) (}a) Mohammadi, M.; McMahon, G.; Sun, L.; Tang, C.; Hirth, P.; Yeh, B. K.; Hubbard, S. R.; Schlessinger, J. Science 1997, 276, 955. (b) Sun, L.; Tran, N.; Tang, F.; App, H.; Hirth, P.; McMahon, G.; Tang, C. J. Med. Chem. 1998, 41, 2588. (c) Vieth, M.; Commins, D. J. J. Med. Chem. 2000, 43, 3020. (d) Bramson, H. N.; Corona, J.; Davis, S. T.; Dickerson, S. H.; Ederstein, M.; Frye, S. V.; Gampe, R. T., Jr.; Harris, P. A.; Hassell, A.; Holmes, W. D.; Hunter, R. N.; Lackey, K. E.; Lovejoy, B.; Luzzio, M. J.; Montana, V.; Rocque, W. J.; Rusnak, D.; Schewchuk, L.; Veal, J. M.; Walker, D. H.; Kuyper, L. F. J. Med. Chem. 2001, 44, 4339. (e) Sun, L.; Liang, C.; Shirazian, S.; Zhou, Y.; Miller, T.; Cui, J.; Fukuda, J. Y.; Chu, J.-Y.; Nematalla, A.; Wang, X.; Chen, H.; Sistla, A.; Luu, T. C.; Tang, F.; Wei, J.; Tang, C. J. Med. Chem. 2003, 46, 1116.

⁽⁵⁾ Robinson, R. P.; Reiter, L. A.; Barth, W. E.; Campeta, A. M.; Cooper, K.; Cronin, B. J.; Destito, R.; Donahue, K. M.; Falkner, F. C.; Fiese, E. F.; Johnson, D. L.; Kuperman, A. V.; Liston, T. E.; Malloy, D.; Martin, J. J.; Mitchell, D. Y.; Rusek, F. W.; Shamblin, S. L.; Wright, C. F. J. Med. Chem. 1996, 39, 10

⁽⁶⁾ Woodard, C. L.; Li, Z.; Kathcart, A. K.; Terrell, J.; Gerena, L.; Sanchez, M.-L.; Kyle, D. E.; Bhattacharjee, A. K.; Nichols, D. A.; Ellis, W.; Prigge, S. T.; Geyer, J. A.; Waters, N. C. *J. Med. Chem.* **2003**, *46*, 3877.

Therefore, development of a stereoselective and diversity-oriented approach for synthesis of such 3-alkylideneoxindoles $(\mathbf{A} \rightarrow \mathbf{C})$ are in high demand (Scheme 1). We have already

$$\begin{array}{c|c}
 & & & \\
 & & & \\
\hline
 &$$

reported reductive cyclization of \mathbf{D} with In and iodine to prepare 3-alkylidenehexahydrofuro[2,3-b]pyrans \mathbf{F} .8 The intramolecular carboindation of \mathbf{D} occurred via vinylindium intermediate \mathbf{E} to give a mixture of (E)- and (Z)-isomers \mathbf{F} in good yield with moderate stereoselectivity (1/1-8/1) of E/Z (eq 1). We expected that in the case of iodo-ynamide \mathbf{A} , stereochemically defined alkene \mathbf{C} would be obtained predominantly if the indium atom coordinates to the amidecarbonyl group in \mathbf{B} . Here we report the first stereoselective synthesis of (E)-, (Z)-, and disubstituted 3-alkylideneoxindoles \mathbf{C} using tandem indium-mediated carbometalation and palladium-catalyzed cross-coupling reaction.

We initially examined the cyclization of **1a** under the reaction conditions developed previously (In and I₂ in DMF, Table 1). Sa,c Although the cyclization product **3a** was obtained exclusively, the chemical yield of **3a** was only 40% due to recovery of the starting material **1a** in 45% yield (run 1). After optimization of the reaction conditions, we found that additives had a dramatic effect on the reaction rate. When Br₂ was added to the reaction mixture instead of I₂, 5-exo cyclization proceeded smoothly to give (*E*)-**3a** in 81% yield as a single isomer (run 2). Furthermore, it was revealed that pyridinium tribromide (Py·HBr₃) could be used for this reaction instead of Br₂, but the combination of In and NBS provided no desired product (runs 3 and 4). We preferred to use Py·HBr₃ due to its easy handling. To investigate the

Table 1. Reductive Radical Cyclization Reaction

$$\begin{array}{c|c}
Bu \\
\hline
Condition \\
\hline
DMF \\
rt, 12h
\end{array}$$

$$\begin{array}{c|c}
Bu \\
\hline
InX_2
\end{array}$$

$$\begin{array}{c|c}
A \\
\hline
3a
\end{array}$$

$$\begin{array}{c|c}
Bu \\
\hline
A \\
\hline
N \\
Bn
\end{array}$$

		yield (%)	
run	condition	3a (E:Z)	1a
1	In (2 equiv) $+$ I ₂ (1 equiv)	40 (E)	45
2	In (2 equiv) $+$ Br ₂ (1 equiv)	81 (<i>E</i>)	0
3^a	In (2 equiv) $+ Py \cdot HBr_3$ (1 equiv)	80 (E)	0
4	In (2 equiv) $+$ NBS (1 equiv)	0	80
5	Bu_3SnH (1.2 equiv) + Et_3B (1.2 equiv)	59 (2:1)	0
6	$InCl_3$ (0.1 equiv) + $NaBH_4$ (2.0 equiv)	19 (1.1:1)	50

^a Reaction mixture of compound 1 (1 mmol), In (2 mmol), Py∙HBr₃, or Br₂ (1 mmol) in DMF (2 mL) was stirred for 12 h at room temperature under an argon atmosphere.

potentiality of other reagents, 1a was treated with Bu_3SnH^{11} and $InCl_3-NaBH_4$, 12 affording the mixture of (E)- and (Z)-alkenes 3a in a ratio of 1/1 to 2/1 (runs 5 and 6). These results suggests that the (E)-selective production in the Inmediated reaction was due to strong coordination of the indium atom to the amidecarbonyl group of the intermediate 2a. It has been reported that the coordination of indium reagents to a hydroxy group of the substrate can be used to control stereogenic centers. 13

Having established the optimized reaction conditions for **3a**, we next applied these conditions to synthesize various (*E*)-3-alkylideneoxindoles **3b**-**g**. Representative results are shown in Table 2. Except for **1f** and **1g**, the In-mediated

Table 2. Reductive Radical Cyclization Reaction for Synthesis of (*E*)-Alkenes

				yi	yield (%)	
run	1	R	reaction time (h)	3	(E:Z)	
1	1b	Et	24	3b	75 (E)	
2^a	1c	CH ₂ OBn	24	3c	70 (E)	
3	1d	p -CF $_3$ -Ph	18	3d	75 (<i>E</i>)	
4	1e	Ph	24	$3e^{7a}$	80 (E)	
5	1f	p -CH $_3$ -Ph	18	3f	84 (19:1)	
6	1g	<i>p</i> -MeO–Ph	18	3g	80 (10:1)	

^a Two folds of In and Py•HBr₃ was used.

cyclizations of 1b-e under the same conditions gave the desired products 3b-e as single isomers in good yields (runs 1-4). In contrast, treatment of 1f and 1g, each bearing an

2826 Org. Lett., Vol. 6, No. 16, 2004

⁽⁷⁾ E:Z = 5:1-1:5, for example: (a) Mori, M.; Ban, Y. *Tetrahedron Lett.* **1979**, 20, 1133. (b) Fielding, M. R.; Grigg, R.; Urch, C. J. *Chem. Commun.* **2000**, 2239.

^{(8) (}a) Yanada, R.; Nishimori, N.; Matsumura, A.; Fujii, N.; Takemoto, Y. *Tetrahedron Lett.* **2002**, *43*, 4585. (b) Ueda, M.; Miyabe, H.; Nishimura, A.; Miyata, O.; Takemoto, Y.; Naito, T. *Org. Lett.* **2003**, *5*, 3835. (c) Yanada, R.; Koh, Y.; Nishimori, N.; Matsumura, A.; Obika, S.; Mitsuya, H.; Fujii, N.; Takemoto, Y. *J. Org. Chem.* **2004**, *69*, 2417. (d) Yanada, R.; Obika, S.; Nishimori, N.; Yamauchi, M.; Takemoto, Y. *Tetrahedron Lett.* **2004**, *45*, 2331.

electron-donating group on the aromatic ring in the R group, with In and Py•HBr₃ provided the corresponding (E)-isomers 3f-g along with (Z)-isomers as minor products (runs 5 and 6). The ratio of Z/E was dependent on the substituents on the aromatic ring in the R group. Substrates bearing a more electron-donating group in the R group tended to provide a (Z)-isomer with a higher Z/E ratio.

To confirm the existence of the vinylindium intermediate **2a**, the reaction mixture of **1a** was quenched with 1*N*-DCl, resulting in the production of the deuterated product (*E*)-**3a-D** (75% D) (eq 2). Since this observation confirmed the

$$\begin{array}{c|c}
Bu & Bu \\
\hline
 & In \\
 & In \\
\hline
 & In \\
 & In \\
\hline
 & In \\
 & I$$

involvement of 2a, we next examined the reaction of vinylindium intermediate 2h and aryl halides in the presence of a palladium catalyst to give (Z)-alkenes 3 stereoselectively (Table 3). Pd-catalyzed cross-coupling reactions of vinyl-

Table 3. Tandem Carboindation and Cross-Coupling Reaction for (*Z*)-Alkenes

run		Ar	Pd cat.	additive	yicid (70)		
		Ai			3 ((Z)	3 h
	1	<i>p</i> -CH ₃ Ph	Pd(PPh ₃) ₄	_	3 f	30	30
	2	p -CH $_3$ Ph	Pd(acac) ₂	_	3 f	32	28
	3	p -CH $_3$ Ph	Pd(acac) ₂	LiBr	3 f	60	0
	4	Ph	Pd(acac) ₂	LiBr	3e ^{7 a}	60	0
	5	<i>p</i> -CF ₃ Ph	Pd(acac) ₂	LiBr	3 d	78	0
	6	s	Pd(acac) ₂	LiBr	3 i	55	0

indiums and aryl halides have already been reported by Sarandeses, Yamamoto, Araki, Oshima, and our group. 8a,8c,14 Treatment of the vinylindium intermediate **2h** prepared from **1h** with 4-iodotoluene and 0.05 equiv of ${}^{6}\text{Pd}(\text{PPh}_{3})_{4}{}^{14b}$ afforded the coupling product (*Z*)-**3f** in 30% yield along with the protonated product **3h** (run 1). Since the (*E*)-isomer **3f**

could not be identified in the reaction mixture, the (Z)selectivity was revealed to be very high. To improve the chemical yield, we examined cross-coupling reactions with various palladium catalysts other than Pd(PPh₃)₄. Although the reaction of **2h** with $Pd(acac)_2$ gave a mixture of (Z)alkene 3f and 3h, we found that the addition of LiBr (3 equiv), 8c,13 together with Pd(acac)2, accelerated the coupling reaction, giving the expected (Z)-alkene 3f as a single isomer in 60% yield (runs 2 and 3). The same subjection of vinylindium 2h to the coupling reaction with several aryl iodides produced the corresponding (Z)-alkenes 3e, 3d, and 3i exclusively (runs 4-6). In this way, we accomplished a novel stereoselective synthesis of several (Z)-3-alkylideneoxindoles 3 from 1h by a tandem intramolecular carboindation and ligandless Pd-catalyzed cross-coupling reaction¹⁵ via 2h, though the chemical yields of (Z)-3 need to be improved. This ligandless process should be a useful method from the viewpoint of cost, purification of the reaction mixture, and atom economy.

Having succeeded in the synthesis of (E)- and (Z)-3alkylideneoxindoles, we finally undertook the stereoselective synthesis of disubstituted 3-alkylideneoxindoles 4. Tandem cross-coupling reactions of 1e with several aryl iodides via vinylindium 2e were carried out under the conditions in the presence of Pd(acac)₂ and LiBr. In all cases, the corresponding disubstituted 3-alkylideneoxindoles 4 were obtained in good yields with no contamination of other stereoisomers. Since stereoisomer 4a (E) of 4a (Z) could be prepared starting from 1f and iodobenzene by the same procedure, the stereoselectivity was unambiguously determined by a comparison of their ¹H NMR spectra. In addition, it is notable that a p-methoxyphenyl group could be introduced with perfect retention of the configuration in the synthesis of 4c, in sharp contrast to the synthesis of 3g. Generally, the coupling reaction into disubstituted 3-alkylideneoxindoles 4 proceeded not only with perfect stereoselectivity but also in better yield than that of the corresponding (Z)-adducts. Consequently, this method provides an efficient route to disubstituted 3-alkylideneoxindoles, which can be regarded as oxindole analogues of the anti-breast cancer drug tamoxifen. 16 In summary, we have developed the first efficient methods for stereoselective and diversity-oriented synthesis

Org. Lett., Vol. 6, No. 16, 2004

⁽⁹⁾ We tried to observe the cyclic voltammograms of In with I_2 and In with Br_2 in DMF to consider the differences in the reactions, referring to the previous results of SmI_2 and $SmBr_2$, which showed remarkable potential differences. 10 However, no clear redox responses involving In ions were observed. This is presumably due to the less electroactive nature of In. Actually, the electrochemical data of In have been scarcely available up to now.

^{(10) (}a) Shabangi, M.; Kuhlman, M. L.; Flowers, R. A., II. *Org. Lett.* **1999**, *I*, 2133. (b) Miller, R. S.; Sealy, J. M.; Shabangi, M.; Kuhlman, M. L.; Fuchs, J. R.; Flowers, R. A., II. *J. Am. Chem. Soc.* **2000**, *122*, 7718. (c) Kuhlman, M. L.; Flowers, R. A., II. *Tetrahedron Lett.* **2000**, *41*, 8049. (d) Knettle, B. W.; Flowers, R. A., II. *Org. Lett.* **2001**, *3*, 2321.

⁽¹¹⁾ Brunton, S. A.; Jones, K. J. Chem. Soc., Perkin Trans 1. 2000, 763.
(12) Inoue, K.; Sawada, A.; Shibata, I.; Baba, A. J. Am. Chem. Soc. 2002, 124, 906.

^{(13) (}a) Paquette, L. A.; Mitzel, T. M. J. Am. Chem. Soc. 1996, 118, 1931. (b) Paquette, L. A.; Bennett, G. D.; Isaac, M. B.; Chhatriwalla, A. J. Org. Chem. 1998, 63, 1836. (c) Paquette, L. A.; Rothhaar, R. R. J. Org. Chem. 1999, 64, 217. (d) Araki, S.; Shiraki, F.; Tanaka, T.; Nakano, H.; Subburaj, K.; Hirashita, T.; Yamamura, H.; Kawai, M. Chem. Eur. J. 2001, 7, 2784. (e) Yanada, R.; Kaieda, A.; Takemoto, Y. J. Org. Chem. 2001, 66, 7516. (f) Araki, S.; Kenji, O.; Shiraki, F.; Hirashita, T. Tetrahedron Lett. 2002, 43, 8033.

⁽¹⁴⁾ Stereoselective allyl- and benzylindation/Pd-catalyzed coupling reaction: Fujiwara, N.; Yamamoto, Y. J. Org. Chem. 1999, 64, 4095. Stereoselective hydroindation/Pd-catalyzed coupling reaction: Takami, K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2002, 4, 2993. Other coupling reactions: (a) Pérez, I.; Sestelo, J. P.; Sarandeses, L. A. Org. Lett. 1999, I, 1267. (b) Hirashita, T.; Yamamura, H.; Kawai, M.; Araki, S. Chem. Commun. 2001, 387. (c) Pérez, I.; Sestelo, J. P.; Sarandeses, L. A. J. Am. Chem. Soc. 2001, 123, 4155. (d) Takami, K.; Yorimitsu, H.; Shinokubo, H.; Matsubara, S.; Oshima, K. Org. Lett. 2001, 3, 1997. (e) Hirashita, T.; Hayashi, Y.; Mitsui, K.; Araki, S. J. Org. Chem. 2003, 68, 1309.

Table 4. Tandem Carboindation and Cross-Coupling Reaction for Disubstituted 3-Alkylideneoxindoles

of various (*E*)-, (*Z*)-, and disubstituted 3-alkylideneoxindoles using tandem In-mediated carbometalation and ligandless Pd-catalyzed coupling reaction. The key step is the first stereoselective carboindation reaction of **1a**-**g** using the strong coordination ability of an indium atom. Our method

provides a versatile tool for the total synthesis of natural products and for random screening to find drug candidates.

Acknowledgment. This work was supported in part by a Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Science, Sports, and Culture, Japan, and by the 21st Century COE Program "Knowledge Information Infrastructure for Genome Science".

Supporting Information Available: Information on general experimental procedures and on characteristics of synthetic compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL048866N

2828 Org. Lett., Vol. 6, No. 16, 2004

⁽¹⁵⁾ Fu reported Negishi reactions of organozirconium reagents under ligandless conditions. Wiskur, S. L.; Korte, A.; Fu, G. C. *J. Am. Chem. Soc.* **2004**, *126*, 82.

^{(16) (}a) Harper, M. J. K.; Walpole, A. L. *Nature (London)*, **1966**, 212, 87. (b) Kirk, J.; Syed, S. K.; Harris, A. L.; Jarman, M.; Roufogalis, B. D.; Stratford, I. J.; Camichael, J. *Biochem. Pharmacol.* **1994**, 48, 277. (c) van den Koedijk, C. D. M. A.; Blankenstein, M. A.; Thijssen, J. H. H. *Biochem. Pharmacol.* **1994**, 47, 1927. (d) Callaghan, R.; Higgins, C. F. *Brit. J. Cancer* **1995**, 71, 294.